TB Human Challenge Consortium

Brian Robertson
MRC Centre for Molecular Bacteriology and Infection
Department of Medicine, Imperial College London

Including work and slides from:

Helen McShane, Jenner Institute, University of Oxford
Eric Rubin, Harvard School of Public Health
Why do we need a TB Human Challenge model?

- Urgent need for better TB vaccine
- No validated immunological correlate
- Common TB animal models do not adequately represent human TB, for vaccine testing purposes
 - Mouse, Guinea pig, Rabbit, Bovine, NHP
- Capacity to perform and fund efficacy trials is limited

- A TB human challenge model would facilitate vaccine development
 - Optimisation of dose, route of vaccination etc.
 - Selection of which candidates progress to efficacy trials
 - Potential to identify immune correlates using challenge model
Other Human Challenge models

- **Controlled Human Malaria Infection (CHMI)**
 - Test efficacy of vaccines and drugs against *Plasmodium falciparum*
 - Sporozoite challenge (bites of infectious mosquitoes)
 - Inoculum of blood-stage parasites
 - Efficient drug treatment at end of study

- Gonorrhea
- Cholera
- Respiratory syncytial virus
- Influenza
- Zika
Controlled Human *Mycobacteria* Infection?

- Issue of using *M. tuberculosis*
 - Safety
 - BCG, attenuated *Mtb*
 - Route of delivery?
 - Skin, pulmonary
 - What output measurement?
 - Simple, accessible detection: reporters?
Controlled Human *Mycobacteria* Infection?

- Issue of using *M. tuberculosis*
 - Safety
 - **BCG**, attenuated *Mtb*
 - Route of delivery?
 - **Skin**, Pulmonary
 - What output measurement?
 - Simple, accessible detection: **reporters**?
A TB Human Challenge Skin model

Human intradermal challenge model

Intradermal injection of mycobacterial reporter in vaccinees

Measure signal loss over time, through skin

Assess vaccine efficacy

- Evaluate fluorescence and bioluminescence reporters for use in an intradermal challenge model for TB vaccine evaluation
 - Detect reporters expressed in BCG in pig skin and mice
Choice of reporters?

- **Bioluminescence**: requires metabolically active organisms
 - decay in bioluminescence indicates vaccine-induced killing
 - Alternative: unstable fluorescent reporters.

- **Fluorescence**: does not require live organisms
 - fluorescent proteins stable
 - provides long-term indicator of bacterial presence
Property of some molecules to absorb light at one wavelength and emit light of longer wavelength

- **GFP** (395/509nm): extensively used in Mycobacteria
 - Yellow Fluorescent Protein (525/538nm)
- **Far-Red shifted proteins**: Turbo-635 (588/635nm)
 - ‘Katushka’ from Sea anemone *Entacmaea quadricolor*
 - Fast maturation and a high pH-stability and photostability
- Unstable reporters improved measure of cell death
 - Dual stable-unstable format
GFPasv-Turbo635 *M. bovis* BCG in pig skin

Turbo635 fluorescence

Time 0 h

Time 24 h
GFPasv - Turbo635 *M. bovis* BCG in pig skin

GFPasv fluorescence

Time 0 h

Time 24 h
BCG-Turbo635: stability and detection \textit{in vivo}

- C57BL/6 mice injected ID with 10^6, 10^4, 10^3 bacteria
 - Imaged daily for 7 days
 - Fluorescent signal detected 10^6
 - Persisted for 5 days

IVIS® Spectrum-CT
A TB human challenge model

Human intradermal challenge model

Intradermal injection of BCG dual reporter in vaccinees

Measure signal loss over time, through skin

Assess vaccine efficacy

IVIS® Spectrum-CT
Prototype imaging device

Human Challenge Imaging System
(Aeras, Dr. T. Baer)
Photonics, Stanford University

- Nikon D-SLR
- Solid state lasers
 - Single or Dual detection
- Wi-Fi or cable for data transfer
Next steps:

- Turbo635 + YFP operons
- Stable/unstable combinations
 - Testing of LOD and stability
 - Minipig vaccination model
- **BCG limitations as reporter strain...**
Controlled Human *Mycobacteria* Infection?

- Issue of using *M. tuberculosis*
 - Safety
 - BCG, *attenuated Mtb*
 - Route of delivery?
 - Skin, Pulmonary
 - What output measurement?
 - Simple, accessible detection: *reporters*?
Yes..

- BCG
- Auxotrophs
- Regulatory mutants

But

... the safest strains fail to grow in animal models and humans

Sabanadamurthy I&I 73:1196 (2005)
The problem

How do you measure vaccine efficacy if your challenge strain doesn’t grow?

Timed kill switch

- Regulated Expression of a toxin
 - Phage lysins, Rnases etc
- OFF \textit{in vitro} (Tet-dependent)
- ON during infection (Tet absent)

+ Tetracycline
Toxin OFF \textit{(in vitro)}

–Tetracycline
Toxin ON \textit{(in vivo)}

Eric Rubin
Failsafe mechanism

Slow starvation

- Non-natural amino acids not found in the host
 - This could allow us to create “auxotrophs” in any essential gene
 - Growth \textit{in vitro} with NN-AA
 - Growth fails \textit{in vivo} without NN-AA

\begin{verbatim}
AUG UUU GCU UGG UGG UAG AUG CUG GUG GGG GAG UAA
\end{verbatim}
Slow starvation

Alanine racemase

- No additive
- + Non-natural AA

Biotin synthetase

- No additive
- + Non-natural AA
Pulmonary detection

Engineer a challenge strain to produce a reporter molecule that can be sensitively and quantitatively detected

Volatile molecules?
- Grape – methyl anthranilate
- Banana – isoamyl acetate
- **Wintergreen** – methyl salicylate
- Cinnamon – cinnamaldehyde
- Lemon – limonene
- Garlic – sulphur compounds
Mycobacterium smegmatis

Chorismate \rightarrow Isochorismate \rightarrow Salicylic Acid

Detection limit $\sim 10^4$ bacteria

Eric Rubin
TB041: A clinical challenge trial to evaluate controlled human infection with BCG administered by the aerosol inhaled route compared with the intradermal route in healthy, BCG-naïve, UK adult volunteers

- **Dose escalation study:**
 - 10^3, 10^4, 10^5 BCG SSI* or Saline inhalation

- **Outcome measures**
 - Safety
 - Day 14 bronchoscopy
 - No macroscopic abnormalities to date
 - No SAEs
 - BCG recovery from BALF
 - Immunogenicity

*No longer available.
Revised trial design with BCG Bulgaria (InterVax) including 10^4, 10^5, 10^6
BALF PPD responses

Aerosol response at least as good as Intradermal

Helen McShane, University of Oxford
Summary – TB Human Challenge Model

• An **attenuated** *Mtb* reporter challenge strain to test vaccines
 • Timed expression of toxin as kill switch (ER)
 • Non-natural amino acids to make synthetic auxotroph (ER)

• An attenuated *Mtb* **reporter** strain
 • Fluorescent for non-invasive detection in the **skin** (BR)
 • Expressing volatile compounds for detection in **expired breath** from the **lungs** (ER)

• Pulmonary administration trial in progress
 • Safety and immunobiology of aerosolised BCG (HMcS)
Acknowledgements – Helen McShane

Iman Satti
Danny Wright
Morven Wilkie
Julia Marshall
Stephanie Harris
Joel Meyer
Alison Lawrie
Angela Minassian
Sam Vermaak
Jenny McNulty
Raquel Ramon-Lopez
Rachel Tanner

Oxford Centre for Respiratory Medicine
Henry Bettinson
Acknowledgements

Dr Nitya Krishnan
Dr Iria Uhia-Castro
Izabela Glegola-Madejska (IVI Facility)

Member of the Human Challenge consortium, including:
Christina Baer, Sarah Fortune, Eric Rubin - Harvard School of Public Health
Thomas Baer - Stanford University
Some questions

- How safe does a strain need to be?
- How long does a strain have to live?
- How sensitive does a reporter need to be?
- What kind of vaccines would this work for?
 - Can we detect a vaccine effect?
- Would this be acceptable to the regulators?