April 10, 2015

The non-human primate model in TB vaccine development

Tom Evans MD
Aeras
Agenda

• Issues
• Transmission studies
• Recent advancements
 – Outcomes
 – Endpoint analysis
 – Design
• Going forward
Development of the macaque model

Ho et al. I&I 2015
Primate Selection Issues

• Species
 – Indian-origin Rhesus Macaques
 – Chinese-origin Rhesus Macaques
 • Highly susceptible
 • Unclear if there are origin differences
 • Develop fairly severe hilar adenopathy (reminiscent of childhood TB)
 – Cynomolgus Macaques
 • Latency in 50% at low dose by intrabrochial administrations, but all infected, and disease mimics the heterogeneity seen in humans

• Age
 – Usually use adult (not adolescent)

• Almost always male

• Confounders- breeding colony, diet, microbiome, NTM exposure, stress

• Monkeys in almost all studies have all been infected!
Infection, vaccination and challenge

- **Route of challenge**
 - Intratracheal instillation
 - Intrabronchial instillation
 - Aerosol

- **Dose (15 CFU to 500 CFU)**
 - Aeras uses 15 CFU in rhesus, TBVI uses 500 CFU
 - 3-5 CFU comparison of cynomolgus vs rhesus and aerosol vs. intrabronchial under analysis

- **Strain**
 - Erdman used not the same at each center and attempts to standardize have not succeeded

- **Timing of vaccine boosts and challenge**
 - Natural boosts are likely to be in adolescents
 - Animal study boost of BCG tend to be at 8-16 weeks (at the peak of BCG)
 - Multiple sets of data suggest that at least one year is needed to boost BCG in order not to see “interference” with a vaccine effect
 - Group of monkeys immunized with BCG at birth, which will be challenged in mid-2016 to partially answer these issues
Inoculum - move to bar coded strains

Can measure each challenge separately and every strain in every challenge

Swarm model
- May be sufficient to reliably inoculate ~15 individual bacteria in unvaccinated animals (as established by barcode counting)
- Outputs at 4 weeks post infection:
 - number of bacteria that establish infection
 - progression of infection – max bacterial burden, killing (CFU/CEQ)
 - quantitative effect on dissemination (how many bacteria disseminate)

Repeated low dose infection model
- Goal would be to achieve limiting dose with barcoded Mtb (such that animals get infected ~half the time, presumably with one bacterium though this would be determined by barcode counting)
- Outputs at 4 weeks post infection:
 - How many doses were required to achieve infection? (determined at time of necropsy based on barcode tracking)
 - Progression of infection – max bacterial burden of doses that took and killing (at least of first dose that established infection)
 - Dissemination – only able to track barcodes that established infection
Why choose one over the other?

<table>
<thead>
<tr>
<th></th>
<th>Low dose swarm</th>
<th>Low dose repeat</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROS</td>
<td>- Easier</td>
<td>- Thought to more accurately mimic human infection</td>
</tr>
<tr>
<td></td>
<td>- Likely to require smaller group sizes than LDRC</td>
<td>- Provides more definitive evidence of protection against infection</td>
</tr>
<tr>
<td></td>
<td>- More quantitative resolution around events post-infection if more bacteria establish infection</td>
<td></td>
</tr>
<tr>
<td>CONS</td>
<td>- People are likely to be exposed to lower multiplicity of infection (MOI)</td>
<td>- More complex to track vaccine effects on disease progression given differences in dose timing</td>
</tr>
<tr>
<td></td>
<td>- The low MOI in human infection may be sensed and responded to differently than a higher MOI infection</td>
<td>- May have somewhat less quantitative dynamic range for tracking vaccine effects on dissemination</td>
</tr>
</tbody>
</table>
Can we achieve natural transmission?
Experimental Design

<table>
<thead>
<tr>
<th>Animal #</th>
<th>ID</th>
<th>Sex</th>
<th>Infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>WNP01 (35WK, P.I)</td>
<td>0602031 18</td>
<td>F</td>
<td>Artificial</td>
</tr>
<tr>
<td>WNP02 (35WK, P.I)</td>
<td>051213486</td>
<td>F</td>
<td>Artificial</td>
</tr>
<tr>
<td>WNP03 (~18WK, P.E)</td>
<td>060708814</td>
<td>F</td>
<td>Natural</td>
</tr>
<tr>
<td>WNP04 (~18WK, P.E)</td>
<td>060617598</td>
<td>F</td>
<td>Natural</td>
</tr>
<tr>
<td>WNP05 (~18WK, P.E)</td>
<td>060319026</td>
<td>F</td>
<td>Natural</td>
</tr>
<tr>
<td>WNP06 (~18WK, P.E)</td>
<td>317</td>
<td>F</td>
<td>Natural</td>
</tr>
</tbody>
</table>
WNP04 (~ 18 week post-exposure)
Natural Transmission at Wuhan - Immunologic readout of infection by ELISPOT

PPD-induced IFN-γ (Elispot)

Exposure period

<table>
<thead>
<tr>
<th>Animal ID</th>
<th>Week 8</th>
<th>Week 24</th>
<th>Week 27</th>
<th>Week 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>WNP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WNP2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WNP3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WNP4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WNP5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WNP6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Courtesy of Wenzhe Ho, Wuhan
Low Dose Cynomolgous Macaque Model of TB Infection
JoAnne Flynn, Philana Lin, U. of Pittsburgh

+ 25 CFU M. tb (Erdman) via bronchoscope

\[\rightarrow 100\% \]

2-6 weeks

Cynomolgus macaque

\[\rightarrow 6-8 \text{ months} \]

ACTIVE TB

- Positive Chest x-ray
- Mycobacterial culture
 - repeated + GA or BAL culture
- Clinical signs
 - weight loss
 - appetite loss
 - cough

LATENT TB

- No signs of disease
- CXR negative between 2-6 months
- Mycobacterial culture negative after 2 months
- Clinical signs--none

Capuano, et al IAI 2003
Lin, et al IAI 2009
PET/CT imaging for serial tracking of disease

Visualization of very small lesions
Animals scanned weekly after TB challenge
Serial images reveal disease progression over time

Micro-PET/CT in BSL3 imaging suite at U. Pitt.

Tuberculosis granulomas (~1 mm)
Cyno Low Dose Challenge: Unvaccinated Controls

2051 2
4 Wks PI

2071 2
4 Wks PI

8 Wks PI

21 wks PI: Pre necropsy
Cyno BCG + H56 vaccinated animals

4 Wks PI

8 Wks PI

21 wks PI: Pre necropsy
CMV Vaccine Induces Reduction in Dissemination in both Pulmonary and Extra-Pulmonary Tissue in Rhesus Macaques

Wilcoxon Rank-Sum Test

RhCMV: RhCMV68-1
Study Endpoints- not addressed at all

No studies have had predefined Go-No go end points and appropriate powering analysis or even reliable positive controls! (BCG is variable)

• Survival vs. Fixed
 – Survival not feasible for cost reasons for most studies
 – 16 week observation likely sufficient for rhesus

• CFU
 – Stereology, granuloma specific?
 – Extra-pulmonary: HLNs, others?

• Serum chemistries
 – ESR, CRP, hemoglobin

• Gross Pathology and “scoring systems”
Categories of Protection

- **Lung Protection**
 - **Total PET Hot** (4, 8, 12 weeks, and pre-necropsy)
 - Granuloma Increase from 4 to 12 weeks
 - Percent Sterile Granulomas
 - CFU per granuloma (median)

- **Lymph Node Protection**
 - Lymph Node Count Lymph (4, 8, 12 weeks, and pre-necropsy)
 - Percent Sterile Lymph Nodes
 - CFU per lymph node (median)

- **Extra-Pulmonary Protection**
 - Extra-Pulmonary Score at Necropsy

- **Overall Protection**
 - CFU Score
 - Necropsy Score
What does the future hold: in two years

• Repeat positive control (CMV) in rhesus macaques
• Data on use of low dose swarm versus low does repeat challenge using bar coded libraries, and ability to track dissemination
• Data on how long to wait after BCG priming to boost in order to mimic
• Further data on protection afforded by aerosolized vaccines, and intensive work on lung immunology
• Better assessment of the primate humoral response to TB vaccine candidates